232 research outputs found

    Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear.</p> <p>Results</p> <p>Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven <it>SR/CAMTAs</it>, designated as <it>SlSRs</it>, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All <it>SlSRs </it>were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of <it>SlSR2 </it>was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and <it>SlSR3L </it>and <it>SlSR4 </it>were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven <it>SlSR</it>s were dramatically altered in ripening mutant <it>rin </it>compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant <it>nor </it>and <it>Nr </it>fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all <it>SlSR</it>s within one to two hours.</p> <p>Conclusions</p> <p>This study indicates that <it>SlSR </it>expression is influenced by both the <it>Rin</it>-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.</p

    Plant population and row spacing influence maximum corn yield

    Get PDF
    ... contribution of the North Central Watershed Research Center, Corn Belt Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture ...--P. [3].Digitized 2007 AES MoU.Includes bibliographical references

    Spaceborne Processor Array

    Get PDF
    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer

    Wireless Avionics Packet to Support Fault Tolerance for Flight Applications

    Get PDF
    In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit, and the local ADI number. The destination ADI is used to route the packet to its ultimate destination. At each hop, the sending interface uses the destination address to determine the next node for the data. The sending node is the node address of the interface that is broadcasting the packet. This field is used to determine the health of the subsystem that is sending the packet. In the case of a packet that traverses several intermediate nodes, it may be the node address of the intermediate node. The target node is the node address of the next hop for the packet. It may be an intermediate node, or the final destination for the packet. The sequence number is used to identify duplicate packets. Because each interface has multiple transceivers, the same packet will appear at both receivers. The sequence number allows the interface to correlate the reception and forward a single, unique packet for additional processing. The subnet field allows data traffic to be partitioned into segregated local networks to support large networks while keeping each subnet at a manageable size. This also keeps the routing table small enough so routing can be done by a simple table lookup in an FPGA device. The subsystem class identifies members of a set of redundant subsystems, and, in a hot standby configuration, all members of the subsystem class will receive the data packets. Only the active subsystem will generate data traffic. Specific units in a class of redundant units can be identified and, if the hot standby configuration is not used, packets will be directed to a specific subsystem unit

    Interface Supports Lightweight Subsystem Routing for Flight Applications

    Get PDF
    A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem

    Purification and Biochemical Characterization of Polygalacturonase Produced by Penicillium expansum During Postharvest Decay of 'Anjou' Pear

    Get PDF
    A polygalacturonase (PG) was extracted and purified from decayed tissue of 'Anjou' pear fruit inoculated with Penicillium expansum. Ammonium sulfate precipitation, gel filtration, and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak corresponding to PG activity. PG enzyme activity from healthy and wounded pear tissue was undetectable, which supports the claim that the purified PG is of fungal origin. The purified enzyme had a molecular mass of 41 kDa and a pI of 7.8. Activity of the PG was not associated with a glycosylated protein. The enzyme was active over a broad pH range from 3 to 6, with optimal activity at 4.5 in sodium citrate and sodium acetate buffers. The optimal temperature for activity was 37 degrees C but the enzyme was also active at 0, 5, 10, 20, and 50 degrees C. Thin-layer chromatographic analysis of PG hydrolysis products showed that the enzyme exhibits endo- and exo-activity. The purified enzyme macerated tissue in vitro causing approximate to 30% reduction in mass of pear plugs compared with approximate to 17% reduction for apple. Additionally, it produced 1.5-fold more soluble polyuronides on pear than apple tissue. This work shows for the first time the production of a PG by P. expansum during postharvest decay of pear fruit is different from the previously described PG produced in decayed apple fruit by the same pathogen

    Galaxy Zoo: CANDELS barred discs and bar fractions

    Get PDF
    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ~ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 (fbar = 10.7+6.3 -3.5 per cent after correcting for incompleteness) does not significantly evolve.We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion yearsPeer reviewedFinal Accepted Versio

    Identifying Currents in the Gene Pool for Bacterial Populations Using an Integrative Approach

    Get PDF
    The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns of ancestry connected to the strains. However, the traditional statistical methods for evolutionary inference, such as phylogenetic analysis, are associated with several difficulties under such an extensive sampling scenario, in particular when a considerable amount of recombination is anticipated to have taken place. To meet the needs of large-scale analyses of population structure for bacteria, we introduce here several statistical tools for the detection and representation of recombination between populations. Also, we introduce a model-based description of the shape of a population in sequence space, in terms of its molecular variability and affinity towards other populations. Extensive real data from the genus Neisseria are utilized to demonstrate the potential of an approach where these population genetic tools are combined with an phylogenetic analysis. The statistical tools introduced here are freely available in BAPS 5.2 software, which can be downloaded from http://web.abo.fi/fak/mnf/mate/jc/software/baps.html

    Barriers to asymptomatic screening and other STD services for adolescents and young adults: focus group discussions

    Get PDF
    BACKGROUND: Sexually transmitted diseases (STDs) are a major public health problem among young people and can lead to the spread of HIV. Previous studies have primarily addressed barriers to STD care for symptomatic patients. The purpose of our study was to identify perceptions about existing barriers to and ideal services for STDs, especially asymptomatic screening, among young people in a southeastern community. METHODS: Eight focus group discussions including 53 White, African American, and Latino youth (age 14–24) were conducted. RESULTS: Perceived barriers to care included lack of knowledge of STDs and available services, cost, shame associated with seeking services, long clinic waiting times, discrimination, and urethral specimen collection methods. Perceived features of ideal STD services included locations close to familiar places, extended hours, and urine-based screening. Television was perceived as the most effective route of disseminating STD information. CONCLUSIONS: Further research is warranted to evaluate improving convenience, efficiency, and privacy of existing services; adding urine-based screening and new services closer to neighborhoods; and using mass media to disseminate STD information as strategies to increase STD screening

    Gram Negative Wound Infection in Hospitalised Adult Burn Patients-Systematic Review and Metanalysis-

    Get PDF
    BACKGROUND: Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. METHODS: Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. PRIMARY FINDINGS: Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84). INTERPRETATION: Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.peer-reviewe
    • …
    corecore